ПATIBIA UПIVERSITY

 OF SCIEחCE AחD TECHחOLOGY> FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: BACHELOR OF SCIENCE HONOURS IN APPLIED MATHEMATICS	
QUALIFICATION CODE: 08BSHM	LEVEL: 8
COURSE CODE: ADC801S	COURSE NAME: ADVANCED CALCULUS
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 87

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Prof A.S Eegunjobi
MODERATOR	Prof O.D Makinde

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

1. (a) Determine the minimum distance between the origin and the hyperbola defined by $x^{2}+8 x y+7 y^{2}=226$
(b) Show that $\nabla \cdot\left(\nabla g^{m}\right)=m(m+1) g^{m-2}$, if $\bar{g}=x i+y j+z k$.
(c) A material body's geometric representation is a planar area R , delimited by the curves $y=x^{2}$ and $y=\sqrt{2-x^{2}}$ within the boundaries $0 \leq x \leq 1$. The density function associated with this model is denoted as $\rho=x y$.
i. Find the mass of the body.
ii. Find the coordinates of the center of mass.
(d) Determine the flux of $\overline{\mathbf{F}}=i-j+x y z k$ through the circular region S obtained by cutting the sphere $x^{2}+y^{2}+z^{2}=4$ with a plane $y=x$.
(e) Find the volume of the solid region bounded above the paraboliod $z=1-x^{2}-y^{2}$ and below the plane $z=1-y$.
2. (a) if $Q=\log (\tan x+\tan y+\tan z)$, show that

$$
\frac{\sin 2 x}{2} \frac{\partial u}{\partial x}+\frac{\sin 2 y}{2} \frac{\partial u}{\partial y}+\frac{\sin 2 z}{2} \frac{\partial u}{\partial z}=1
$$

(b) If $x=r \cos \theta$ and $y=r \sin \theta$, find the (r, θ) equations for ϕ which obeys Laplace's equation in two-dimensional caresian co-ordinates

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

(c) If A, B and C are vectors, show that

$$
\begin{equation*}
\frac{d}{d t} \mathbf{A} \cdot \mathbf{b} \times \mathbf{C}=\frac{d \mathbf{A}}{d t} \cdot \mathbf{B} \times \mathbf{C}+\mathbf{A} \cdot \frac{d \mathbf{B}}{d t}+\mathbf{A} \cdot \mathbf{B} \times \frac{d \mathbf{C}}{d t} \tag{5}
\end{equation*}
$$

3. (a) Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by taking the starting from the point $\mathbf{X}_{1}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$ using Davidon-Fletcher-Powell (DFP) method with

$$
\left[B_{1}\right]=\left[\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right], \quad \epsilon=0.01
$$

(b) Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by taking the starting from the point $\mathbf{X}_{1}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$, by using Newton's Method
4. (a) Evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x d x}{(2 \cos x+\sin x)^{2}} \text { given } \int_{0}^{\frac{\pi}{2}} \frac{\cos x d x}{\alpha \cos x+\sin x}=\frac{\alpha \pi}{2\left(\alpha^{2}+1\right)}-\frac{\ln \alpha}{\alpha^{2}+1}
$$

(b) Find the maximum possible volume of a rectangular box that is completely enclosed by the surface of the ellipsoid defined by the equation $2 x^{2}+3 y^{2}+z^{2}=18$, where each of its edges is parallel to one of the coordinate axes.

End of Exam!

